Least-cost electricity mix for South Africa by 2040
Scenarios for South Africa’s future electricity mix

CSIR Energy Centre

Cape Town, 3 November 2016
The Integrated Resource Plan (IRP) is the expansion plan for the South African power system.

In its most recent version, the IRP 2010 plans a doubling of power-generation capacity from 2010 to 2030.

Since the date of its release in early 2011, two main assumptions have changed:

- The demand forecast is now significantly lower than in IRP 2010.
- The costs of solar PV and wind are significantly lower than predicted in IRP 2010.

The CSIR has therefore conducted a study to re-optimise the South African power mix until 2040.

Two scenarios were defined to quantify two different ways of expanding the South African power system:

- “Re-Optimised” – least-cost re-optimisation of the demand/supply gap that widens from 2020-2040.

An hourly expansion and dispatch model (incl. unit commitment) using PLEXOS was run for both scenarios to test for adequacy and for economic feasibility.
Agenda

Background

Approach and assumptions

Results

Conclusions
IRP 2010: expansion plan for South Africa’s power system until 2030

Installed capacity and electricity supplied from 2010 to 2030 as planned in the IRP 2010

Business-as-Usual

<table>
<thead>
<tr>
<th>Year</th>
<th>Total installed net capacity in GW</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010</td>
<td>35.9</td>
</tr>
<tr>
<td>2015</td>
<td>42.2</td>
</tr>
<tr>
<td>2020</td>
<td>85.7</td>
</tr>
<tr>
<td>2025</td>
<td>9.2</td>
</tr>
<tr>
<td>2030</td>
<td>41.1</td>
</tr>
</tbody>
</table>

Re-Optimised

<table>
<thead>
<tr>
<th>Year</th>
<th>Total installed net capacity in GW</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010</td>
<td>8.4</td>
</tr>
<tr>
<td>2015</td>
<td>9.2</td>
</tr>
<tr>
<td>2020</td>
<td>9.6</td>
</tr>
<tr>
<td>2025</td>
<td>1.8</td>
</tr>
<tr>
<td>2030</td>
<td>2.4</td>
</tr>
</tbody>
</table>

Electricity supplied in TWh per year

<table>
<thead>
<tr>
<th>Year</th>
<th>Electricity supplied in TWh per year</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010</td>
<td>5%</td>
</tr>
<tr>
<td>2015</td>
<td>10%</td>
</tr>
<tr>
<td>2020</td>
<td>30%</td>
</tr>
<tr>
<td>2025</td>
<td>40%</td>
</tr>
<tr>
<td>2030</td>
<td>50%</td>
</tr>
</tbody>
</table>

Renewables

- Solar PV: 5% (12 TWh/yr)
- Wind: 14% (62 TWh/yr)
- Nuclear: 3% (90 TWh/yr)
- Coal: 24% (436 TWh/yr)
- Other: 15% (275 TWh/yr)

Carbon free

- 10% (25 TWh/yr)
- 34% (149 TWh/yr)

CO2 emissions [Mt/yr]

- 2010: 237
- 2030: 275

Note: Renewables include solar PV, CSP, wind, biomass, biogas, landfill and hydro (includes imports); CO2 emission intensity moves from 912 kgCO2/MWh (2010) to 600 kgCO2/MWh (2030)

Sources: DoE IRP 2010-2030; CSIR Energy Centre analysis
Link between planning and real world needs to be established
In-principle process of IRP planning and implementation

Planning / simulation world

- **Inputs**
 - Demand forecast
 - Technology costs assumptions
 - CO2 limits
 - Etc.

IRP model
(least-cost optimisation)

Output
- Capacity expansion plan

Actuals / real world

- **Inputs**
 - Ministerial Determinations based on capacity expansion plan

- **Procurement**
 (competitive tender e.g. REIPPPP, coal IPPPP)

- **Outcomes**
 - Preferred bidders
 - MW allocation
 - Technology costs actuals (Ø tariffs)

Currently, no feedback loop from procurement results to IRP planning assumptions institutionalised

Sources: CSIR Energy Centre analysis
Actual solar PV tariffs now well below cost assumptions of IRP 2010
First four bid windows’ results (solar PV) of Department of Energy’s REIPPPP

<table>
<thead>
<tr>
<th>Year</th>
<th>Assumptions: IRP2010 - high</th>
<th>Assumptions: IRP2010 - low</th>
<th>Actuals: REIPPPP (BW1-4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010</td>
<td>3.65</td>
<td>2.18</td>
<td>3.65</td>
</tr>
<tr>
<td>2012</td>
<td>2.18</td>
<td>1.17</td>
<td>2.18</td>
</tr>
<tr>
<td>2014</td>
<td>1.17</td>
<td>0.91</td>
<td>1.17</td>
</tr>
<tr>
<td>2016</td>
<td>0.91</td>
<td>0.62</td>
<td>0.91</td>
</tr>
</tbody>
</table>

∑ = 2.8 GW

Actual wind tariffs equally well below cost assumptions of IRP 2010
First four bid windows’ results (wind) of Department of Energy’s REIPPPP

Tariff in R/kWh (Apr-2016-Rand)

Notes: REIPPPP = Renewable Energy Independent Power Producer Programme; BW = Bid Window; bid submissions for the different BWs: BW1 = Nov 2011; BW2 = Mar 2012; BW 3 = Aug 2013; BW 4 = Aug 2014; BW 4 (Expedited) = Nov 2015 Sources: StatsSA for CPI; IRP 2010; South African Department of Energy (DoE); DoE IPP Office; CSIR analysis
Agenda

Background

Approach and assumptions

Results

Conclusions
Demand grows, existing fleet phases out – gap needs to be filled

Forecasted supply and demand balance for the South African electricity system from 2016 to 2040

Notes: MTSAO demand forecasts are extrapolated from 2025 to 2040 using CAGR; IRP 2016 under development is using High Growth Low Intensity (CSIR) demand forecast as base case.

1. Peak demand = 53.2 GW 2. Peak demand = 68.7 GW Sources: DoE (IRP 2010); DoE (IRP 2013); Eskom MTSAO 2016-2021; StatsSA; World Bank; CSIR analysis

All power plants considered for “existing fleet” that are either:
1) Existing in 2016
2) Under construction
3) Procured (preferred bidder)
Two scenarios defined to fill the supply/demand gap until 2040
Forecasted supply and demand balance for the South African electricity system from 2016 to 2040

Scenario: "Business-as-Usual"
• Generally aligned with IRP 2010, but demand shifted
• Nuclear as per briefing to Portfolio Committee on Energy (11 October 2016)
• New coal, nuclear, some RE
• New capacities fixed as per IRP 2010 (no optimisation)

Scenario: "Re-Optimised"
• Coal, nuclear, gas, RE are all available as supply options
• Supply candidates chosen by least cost optimisation to meet energy and capacity requirement

Notes: MTSAO demand forecasts are extrapolated from 2025 to 2040 using CAGR; IRP 2016 under development is using High Growth Low Intensity (CSIR) demand forecast as base case.
1. Peak demand = 53.2 GW 2. Peak demand = 68.7 GW Sources: DoE (IRP 2010); DoE (IRP 2013); Eskom MTSAO 2016-2021; StatsSA; World Bank; CSIR analysis
Key assumptions: pessimistic regarding solar PV and wind cost, optimistic regarding nuclear cost

Technology Costing Logic Compared to IRP 2010

<table>
<thead>
<tr>
<th>Technology</th>
<th>Costing Logic</th>
<th>Compared to IRP 2010</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solar PV</td>
<td>Same as IRP 2010 by 2030</td>
<td>Slightly lower until 2030</td>
</tr>
<tr>
<td>Wind</td>
<td>Bid Window 4 Expedited tariff kept constant until 2040</td>
<td>Lower</td>
</tr>
<tr>
<td>CSP</td>
<td>Same as IRP 2013</td>
<td>Slightly higher</td>
</tr>
<tr>
<td>Coal</td>
<td>Coal IPP</td>
<td>Higher</td>
</tr>
<tr>
<td>Nuclear</td>
<td>as per IRP with Rosatom low-estimate CAPEX</td>
<td>Similar</td>
</tr>
<tr>
<td>Gas</td>
<td>as per IRP with fuel updates</td>
<td>Higher</td>
</tr>
</tbody>
</table>

All other assumptions and methodology fully aligned with IRP 2010, for example:

- Discount rate of 8% (real)
- PLEXOS software package used for long-term optimisation & production cost modelling
- Decommissioning schedule of existing Eskom fleet
- Demand forecast using MTSAO 2016-2021 (extrapolated until 2040), reaches the IRP 2010 assumed 2030 level just before 2040
Key input cost assumptions for new supply technologies

Lifetime cost per energy unit

<table>
<thead>
<tr>
<th>Energy Source</th>
<th>Actual new-build tariffs</th>
<th>Assumptions based new-build cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solar PV</td>
<td>0.62 R/kWh</td>
<td></td>
</tr>
<tr>
<td>Wind</td>
<td>0.62 R/kWh</td>
<td></td>
</tr>
<tr>
<td>Coal (IPP)</td>
<td>1.03 R/kWh</td>
<td>1.05-1.16 R/kWh</td>
</tr>
<tr>
<td>Coal (Eskom)</td>
<td>1.05-1.16 R/kWh</td>
<td>1.17 R/kWh</td>
</tr>
<tr>
<td>Nuclear</td>
<td>1.17 R/kWh</td>
<td>1.24 R/kWh</td>
</tr>
<tr>
<td>Gas (CCGT)</td>
<td>1.24 R/kWh</td>
<td>1.51 R/kWh</td>
</tr>
<tr>
<td>Mid-merit Coal</td>
<td>1.51 R/kWh</td>
<td>2.40 R/kWh</td>
</tr>
<tr>
<td>Gas (OCGT)</td>
<td>2.40 R/kWh</td>
<td>3.10 R/kWh</td>
</tr>
<tr>
<td>Diesel (OCGT)</td>
<td>3.10 R/kWh</td>
<td></td>
</tr>
</tbody>
</table>

Typical capacity factor

- Solar PV: 82%
- Wind: 92%
- Coal (IPP): 50%
- Coal (Eskom): 50%
- Nuclear: 10%
- Gas (CCGT): 10%
- Mid-merit Coal: 10%
- Gas (OCGT): 10%
- Diesel (OCGT): 10%

1. Lifetime cost per energy unit is only presented for brevity. The model inherently includes the specific cost structures of each technology i.e. capex, fixed O&M, variable O&M, fuel costs etc.
2. Changing full-load hours for conventional new-build options drastically changes the fixed cost components per kWh (lower full-load hours → higher capital costs and fixed O&M costs per kWh);
 Assumptions: Average efficiency for CCGT = 55%, OCGT = 35%; nuclear = 33%; IRP costs from Jan-2012 escalated to May-2016 with CPI; assumed EPC CAPEX inflated by 10% to convert EPC/LCOE into tariff; Sources: IRP 2013 Update; DOE IPP Office; StatsSA for CPI; Eskom financial reports for coal/diesel fuel cost; EE Publishers for Medupi/Kusile; Rosatom for nuclear capex; CSIR analysis.
Future cost assumptions for solar PV aligned with IRP 2010

Tariff in R/kWh (Apr-2016-Rand)

- **Assumptions:** IRP2010 - low
- **Assumptions:** IRP2010 - high
- **Assumptions for this study**
- **Actuals:** REIPPPP (BW1-4)

Sources: StatsSA for CPI; IRP 2010; South African Department of Energy (DoE); DoE IPP Office; CSIR analysis

Σ = 2.8 GW
Future cost assumptions for wind aligned with results of Bid Window 4

Tariff in R/kWh (Apr-2016-Rand)

Assumptions for this study

Assumptions: IRP2010

Actuals: REIPPPP (BW1-4)

Σ = 4.0 GW

Sources: StatsSA for CPI; IRP 2010; South African Department of Energy (DoE); DoE IPP Office; CSIR analysis
CO2 emissions constrained by RSA’s Peak-Plateau-Decline objective

PPD that constrains CO2 emission from electricity sector

CO2 emissions (electricity sector) [Mt/yr]

Sources: DoE (IRP 2010-2030 Update); StatsSA; CSIR own analysis
Agenda

Background

Approach and assumptions

Results

Conclusions
Least-cost: 70% RE energy in South African electricity sector by 2040
Comparison of energy supply for Business-as-Usual and a Re-Optimised scenario

1 Business-as-Usual

<table>
<thead>
<tr>
<th>Year</th>
<th>Electricity supplied in TWh per year</th>
<th>Carbon Dioxide (Mt/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2016</td>
<td>217</td>
<td>217</td>
</tr>
<tr>
<td>2020</td>
<td>290</td>
<td>268</td>
</tr>
<tr>
<td>2025</td>
<td>350</td>
<td>295</td>
</tr>
<tr>
<td>2030</td>
<td>404</td>
<td>323</td>
</tr>
<tr>
<td>2035</td>
<td>447</td>
<td>357</td>
</tr>
<tr>
<td>2040</td>
<td>472</td>
<td>390</td>
</tr>
</tbody>
</table>

2 Re-Optimised

<table>
<thead>
<tr>
<th>Year</th>
<th>Electricity supplied in TWh per year</th>
<th>Carbon Dioxide (Mt/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2016</td>
<td>217</td>
<td>217</td>
</tr>
<tr>
<td>2020</td>
<td>250</td>
<td>266</td>
</tr>
<tr>
<td>2025</td>
<td>300</td>
<td>295</td>
</tr>
<tr>
<td>2030</td>
<td>348</td>
<td>325</td>
</tr>
<tr>
<td>2035</td>
<td>390</td>
<td>355</td>
</tr>
<tr>
<td>2040</td>
<td>474</td>
<td>390</td>
</tr>
</tbody>
</table>

Sources: CSIR analysis
Significant solar PV and wind capacities rolled out until 2040

Comparison of generation capacity for Business-as-Usual and a Re-Optimised path to 2040

1. Business-as-Usual

- Total installed net capacity in GW

2. Re-Optimised

- Total installed net capacity in GW

Sources: CSIR analysis
1 Business-as-Usual: Coal and nuclear dominate the 2040 energy mix

Demand and Supply in GW

Exemplary Week under Business-as-Usual in 2040

Sources: CSIR analysis
Re-Optimised: Wind and solar PV dominate the 2040 energy mix

Exemplary Week under Re-Optimised in 2040

Sources: CSIR analysis
Re-Optimised scenario creates a steady, significant & increasing market
Roadmap of investment for wind and solar PV to 2040

1 Business-as-Usual

- **2020-2030**
 - Wind: 0.4 GW/yr
 - Solar PV: 0.4 GW/yr

2 Re-Optimised

- **2020-2030**
 - Wind: 2.8 GW/yr
 - Solar PV: 1.5 GW/yr

- **2030-2040**
 - Wind: 4.5 GW/yr
 - Solar PV: 2.5 GW/yr

Sources: CSIR analysis

BW1 → BW 4 (Expedited)
Re-Optimised R87 billion/year cheaper by 2040 (without cost of CO2)

Total cost of power generation in bR/yr (constant 2016)

- Business-as-Usual
- Re-optimised
- Delta (BAU - Re-optimised)

Total Present Value of Delta = R330 billion in 2016 Rand
Business-as-Usual incurs large cost from building new coal and nuclear.

Comparison of total electricity system costs average electricity tariff of BAU and Re-Optimised mix.

1. Business-as-Usual

Total system cost (real) (Apr-2016 Rands) in bR/yr

- 314 (w/o CO2)
- 488 (w/o CO2)
- 517 (w/ CO2)

2. Re-Optimised

Total system cost (real) (Apr-2016 Rands) in bR/yr

- 292 (w/o CO2)
- 401 (w/o CO2)
- 412 (w/ CO2)

Sources: CSIR
Sensitivity on cost difference: Even if RE were 50% more expensive than assumed, Re-Optimised is still cheaper than Business-as-Usual.

Sources: CSIR analysis
Unit cost of power generation: Re-Optimised case is almost 20 cents/kWh cheaper than BAU by 2040
Factoring in cost of CO2 emissions: Re-Optimised case is 23 cents/kWh cheaper than BAU by 2040.
Re-Optimised: CO2 emissions and water use significantly lower

Comparison of CO2 emissions and water use for BAU and a Re-Optimised scenario to 2040

Electricity sector CO2 emissions in MtCO2/yr

-150 Mt/yr (-60%)

Electricity sector water use in billion litres/yr

-40 billion litres/yr (-60%)

Sources: CSIR analysis
Agenda

Background

Approach and assumptions

Results

Conclusions
South Africa can get 70% renewable energy share by 2040 at least cost

Solar PV, wind and natural gas is the cheapest new-build mix for the South African power system

It is the cost-optimal expansion to aim for a 70% renewable energy share by 2040

This “Re-Optimised” mix is almost R90 billion per year cheaper by 2040 than the Business-as-Usual scenario (without factoring in cost of CO2 emissions – difference is > R100 billion per year with CO2)

The Re-Optimised mix will furthermore reduce South Africa’s CO2 emissions by 60% compared to BAU

Avoiding CO2 emissions and least-cost is not a trade-off anymore – South Africa can de-carbonise its electricity sector at negative carbon-avoidance cost

Building out the required capacities until 2040 will provide a steady anchor offtake for a South African solar PV and wind manufacturing industry
Thank you

Ha Khensa

Siyathokoza

Re a leboha

Enkosi

Ro livhuha

Siyabonga

Dankie

Re a leboga